استفاده از رهیافت های شبکه عصبی و مدل های خودرگرسیونی در پیش بینی رشد اقتصادی ایران

Authors

Abstract:

یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد که با توجه به اینکه، پیش بینی صحیح رشد اقتصادی، آثار مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینه‌ی توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند، لذا هدف این مقاله پیش بینی رشد اقتصادی ایران با استفاده از سه مدل شبکه عصبی، میانگین متحرک خودرگرسیون تجمعی، خودرگرسیون واریانس ناهمسانی شرطی نوع تعمیم یافته می باشد. داده های این تحقیق شامل تولید ناخالص داخلی سالانه از سال 1338-1390 است. نتایج سه روش مذکور با استفاده از ریشه میانگین حداقل مربعات خطا و میانگین قدر مطلق درصد خطا مقایسه شده اند. نتایج نشان دهنده آن است که، دقت پیش بینی شبکه عصبی با روش پیشرو بهتر است که با این روش مشخص شد، تولید ناخالص داخلی حقیقی در آینده افزایشی خواهد بود اما نرخ رشد رشد اقتصادی، طی سال های آینده روند مناسبی نخواهد داشت. لذا برنامه ریزی در این ارتباط می تواند از اهمیّت ویژه ای برخوردارباشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

پیش بینی تورم ایران با استفاده از مدل های ساختاری ، سری های زمانی و شبکه های عصبی

امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این م...

full text

مدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک

دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...

full text

پیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی

در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue None

pages  73- 88

publication date 2013-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023